17的因数(19的因数有哪些)
17的因数
17的因数有1,17。因为17是质数,所以因数只有1和它本身。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数。因数是指整数a除以整数b(b≠0)的商正好是整数而没有余数,我们就说b是a的因数。小学数学定义:假如a×b=c,a、b、c都是整数,那么我们称a和b就是c的因数。
定义
在小学数学里,两个正整数相乘,那么这两个数都叫做积的因数,或称为约数。小学数学定义:假如a*b=c(a、b、c都是整数),那么我们称a和b就是c的因数。需要注意的是,唯有被除数,除数,商皆为整数,余数为零时,此关系才成立。反过来说,我们称c为a、b的倍数。在研究因数和倍数时,小学数学不考虑0。
事实上因数一般定义在整数上:设A为整数,B为非零整数,若存在整数Q,使得A=QB,则称B是A的因数,记作B|A。但是也有的作者不要求B≠0。
例如:2X6=12,2和6的积是12,因此2和6是12的因数。12是2的倍数,也是6的倍数。
3X(-9)=-27,3和-9都是-27的因数。-27是3和-9的倍数。
一般而言,整数A乘以整数B得到整数C,整数A与整数B都称作整数C的因数,反之,整数C为整数A的倍数,也为整数B的倍数。
相关性质
1、整除:若整数a除以非零整数b,商为整数,且余数为零,我们就说a能被b整除(或说b能整除a),记作b|a。2、质数﹙素数﹚:恰好有两个正因数的自然数。(或定义为在大于1的自然数中,除了1和此整数自身两个因数外,无法被其他自然数整除的数)。
3、合数:除了1和它本身还有其它正因数。
4、1只有正因数1,所以它既不是质数也不是合数。
5、若a是b的因数,且a是质数,则称a是b的质因数。例如2,3,5均为30的质因数。6不是质数,所以不算。7不是30的因数,所以也不是质因数。
6、公因数只有1的两个非零自然数,叫做互质数。
7、1个非零自然数的正因数的个数是有限的,其中最小的是1,最大的是它本身。而一个非零自然数的倍数的个数是无限的。
8、所有不为零的整数都是0的因数。(还有争议)
9、2是最小的质数。
10、4是最小的合数。
19的因数有哪些
19的因数:1、19。因为19是质数,而质数的因数只有自身和1,所以19的因数为1和19。
假如a*b=c(a、b、c都是整数),那么我们称a和b就是c的因数。需要注意的是,唯有被除数,除数,商皆为整数,余数为零时,此关系才成立。 反过来说,c为a、b的倍数。
除此之外:
1、17的因数:1、17;
2、18的因数:1、2、3、6、9、18;
3、20的因数:1、2、4、5、10、20。
扩展资料:
列举因数:
6的因数有:1和6,2和3。
9的因数有:1和9,3。
10的因数有:1和10,2和5。
15的因数有:1和15,3和5。
12的因数有:1和12,2和6,3和4。
25的因数有:1和25,5。
36的因数有:1和36,2和18,3和12,4和9,6。
注:此处只列举正因数。切记:一个合数的因数不止一组。
最大公约数的求法:
(1)用分解质因数的方法,把公有的质因数相乘。
(2)用短除法的形式求两个数的最大公约数。
(3)特殊情况:如果两个数互质,它们的最大公约数是1。
如果两个数中较小的数是较大的数的约数,那么较小的数就是这两个数的最大公约数。
最小公倍数的方法:
(1)用分解质因数的方法,把这两个数公有的质因数和各自独有的质因数相乘。
(2)用短除法的形式求。
(3)特殊情况:如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
如果两个数中较大的数是较小的数的倍数,那么较大的数就是这两个数的最小公倍数。
以上便是生活百科网整理的有关于17的因数的全部内容,喜欢可以关注我们了解更多相关资讯。