19和57的最大公因数和最小公倍数
19和57的最大公因数是19,最小公倍数是57。最大公因数指的是两个或多个整数的共有约数中最大的一个,12的约数有1、19;57的约数有1、3、9、57。所以,12和15的最大公约数是19,因为19和57是倍数关系,所以,它们的最小公倍数就是57。两个或多个整数公有的倍数叫做它们的公倍数,其中除0以外最小的一个公倍数就叫做这几个整数的最小公倍数。
最大公因数的基本概念
如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。约数和倍数都表示一个整数与另一个整数的关系,不能单独存在。如只能说16是某数的倍数,2是某数的约数,而不能孤立地说16是倍数,2是约数。"倍"与"倍数"是不同的两个概念,"倍"是指两个数相除的商,它可以是整数、小数或者分数。"倍数"只是在数的整除的范围内,相对于"约数"而言的一个数字的概念,表示的是能被某一个自然数整除的数。
几个整数中公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。例如:12、16的公约数有1、2、4,其中最大的一个是4,4是12与16的最大公约数,一般记为(12,16)=4。12、15、18的最大公约数是3,记为(12,15,18)=3。
几个自然数公有的倍数,叫做这几个数的公倍数,其中最小的一个自然数,叫做这几个数的最小公倍数。例如:4的倍数有4、8、12、16,……,6的倍数有6、12、18、24,……,4和6的公倍数有12、24,……,其中最小的是12,一般记为[4,6]=12。12、15、18的最小公倍数是180。记为[12,15,18]=180。若干个互质数的最小公倍数为它们的乘积的绝对值。
常用结论
在解有关最大公约数、最小公倍数的问题时,常用到以下结论:(1)如果两个自然数是互质数,那么它们的最大公约数是1,最小公倍数是这两个数的乘积。
例如8和9,它们是互质数,所以(8,9)=1,[8,9]=72。
(2)如果两个自然数中,较大数是较小数的倍数,那么较小数就是这两个数的最大公约数,较大数就是这两个数的最小公倍数。
例如18与3,18÷3=6,所以(18,3)=3,[18,3]=18。
(3)两个整数分别除以它们的最大公约数,所得的商是互质数。
例如8和14分别除以它们的最大公约数2,所得的商分别为4和7,那么4和7是互质数。
(4)两个自然数的最大公约数与它们的最小公倍数的乘积等于这两个数的乘积。
例如12和16,(12,16)=4,[12,16]=48,有4×48=12×16,即(12,16)×[12,16]=12×16。
最小公倍数的定义
几个数共有的倍数叫做这几个数的公倍数,其中除0以外最小的一个公倍数,叫做这几个数的最小公倍数。自然数a、b的最小公倍数可以记作[a,b],自然数a、b的最大公因数可以记作(a、b),当(a、b)=1时,[a、b]=a×b。如果两个数是倍数关系,则它们的最小公倍数就是较大的数,相邻的两个自然数的最小公倍数是它们的乘积。最小公倍数=两数的乘积/最大公约(因)数,解题时要避免和最大公约(因)数问题混淆。
最小公倍数的适用范围:分数的加减法,中国剩余定理(正确的题在最小公倍数内有解,有唯一的解)。因为,素数是不能被1和自身数以外的其它数整除的数;素数X的N次方,是只能被X的N及以下次方,1和自身数整除。所以,给最小公倍数下一个定义:S个数的最小公倍数,为这S个数中所含素因子的最高次方之间的乘积。
性质及特点
最小公倍数的性质:公倍数(common multiple)指在两个或两个以上的自然数中,如果它们有相同的倍数,这些倍数就是它们的公倍数,其中除0以外最小的一个公倍数,叫做这几个数的最小公倍数。最大公因数和最小公倍数之间的性质:两个自然数的乘积等于这两个自然数的最大公约数和最小公倍数的乘积。最小公倍数的计算要把三个数的公有质因数和独有质因数都要找全,最后除到两两互质为止。
最小公倍数特点:倍数的只有最小的没有最大,因为两个数的倍数可以无穷大
以上便是生活百科网整理的有关于19和57的最大公因数和最小公倍数的全部内容,喜欢可以关注我们了解更多相关资讯。